Java数据结构与算法之单链表深入理解

一、单链表(Linked List)简介

7CFDFFA9-08DC-9545-8559-EA2DA11E3591.png

E093A59D-E8B0-1D3E-4D0F-270E2A8C67CB.png二、单链表的各种操作
1.单链表的创建和遍历

2BCC37DD-797D-9E67-1019-2904B05EFCBD.png

2.单链表的按顺序插入节点 以及节点的修改

CBB91111-33E7-1E2A-A484-5BCEFD9364C0.png

3.单链表节点的删除 

93198904-AA59-50BD-456E-EC3A2F081595.png

4.以上单链表操作的代码实现 (通过一个实例应用)

实例:使用带head头的单向链表实现 - 水浒英雄排行榜管理

1) 完成对英雄人物的增删改查操作,注:删除和修改,查找

2)第一种方法在添加英雄时,直接添加到链表的尾部

3)第二种方式在添加英雄时,根据排名将英雄插入到指定位置(如果有这个排名,则添加失败,并给出提示)

public class SingleLinkedListDemo {
	public static void main(String[] args) {
		// 进行测试
		// 先创建节点
		HeroNode hero1 = new HeroNode(1, "宋江", "及时雨");
		HeroNode hero2 = new HeroNode(2, "卢俊义", "玉麒麟");
		HeroNode hero3 = new HeroNode(3, "吴用", "智多星");
		HeroNode hero4 = new HeroNode(4, "林冲", "豹子头");
		// 创建一个链表
		SingleLinkedList singleLinkedList = new SingleLinkedList();
		// 加入
//		singleLinkedList.add(hero1);
//		singleLinkedList.add(hero2);
//		singleLinkedList.add(hero3);
//		singleLinkedList.add(hero4);
		// 加入按照编号的顺序
		singleLinkedList.addByOrder(hero1);
		singleLinkedList.addByOrder(hero4);
		singleLinkedList.addByOrder(hero2);
		singleLinkedList.addByOrder(hero3);

		// 显示
		singleLinkedList.list();
		// 测试修改节点的代码
		HeroNode newHeroNode = new HeroNode(2, "小卢", "玉麒麟~~");
		singleLinkedList.update(newHeroNode);
		System.out.println("修改后的链表情况~~");
		singleLinkedList.list();
		// 删除节点
		singleLinkedList.del(1);
		singleLinkedList.del(4);
		singleLinkedList.del(3);
		singleLinkedList.del(2);
		System.out.println("删除后的链表情况~~");
		singleLinkedList.list();
	}
}
//定义SingleLinkedList管理我们的英雄
class SingleLinkedList {
	// 先初始化一个头节点,头节点不要动,不存放具体的数据
	private HeroNode head = new HeroNode(0, "", "");

	// 添加节点到单向链表
	// 思路,当不考虑编号顺序时
	// 1.找到当前链表的最后节点
	// 2.将最后这个节点的next指向新的节点
	public void add(HeroNode heroNode) {
		// 因为head节点不能动,因此我们需要一个辅助变量temp
		HeroNode temp = head;
		// 遍历链表,找到最后
		while (true) {
			// 找到链表的最后
			if (temp.next == null) {
				break;
			}
			// 如果没有找到最后,将temp后移
			temp = temp.next;
		}
		// 当退出while循环时,temp就指向了链表的最后
		// 将最后这个节点的next指向新的节点
		temp.next = heroNode;
	}
	// 第二种方式在添加英雄时,根据排名将英雄插入到指定位置
	// (如果有这个排名,则添加失败,并给出提示)
	public void addByOrder(HeroNode heroNode) {
		// 因为头节点不能动,因此我们仍然通过一个辅助指针(变量)来帮助找到添加的位置
		// 因为单链表,因为我们找的temp是位于添加位置的前一个节点,否则插入不了
		HeroNode temp = head;
		boolean flag = false;// flag标志添加的编号是否存在,默认为false
		while (true) {
			if (temp.next == null) {// 说明temp已经在链表的最后
				break;
			}
			if (temp.next.no > heroNode.no) {// 位置找到,,就在temp的后面插入
				break;
			} else if (temp.next.no == heroNode.no) {// 说明希望添加的heroNode的编号已然存在
				flag = true;// 说明编号存在
				break;
			}
			temp = temp.next;// 后移,遍历当前链表
		}
		// 判断flag的值
		if (flag) {// 不能添加,说明编号存在
			System.out.printf("准备插入的英雄的编号 %d 已经存在了,不能加入\n", heroNode.no);
		} else {
			// 插入到链表中,temp的后面
			heroNode.next = temp.next;
			temp.next = heroNode;
		}
	}
	// 修改节点的信息,根据no编号来修改,即no编号不能改
	// 说明
	// 1.根据newHeroNode 的 no 来修改即可
	public void update(HeroNode newHeroNode) {
		// 判断是否空
		if (head.next == null) {
			System.out.println("链表为空~~");
			return;
		}
		// 找到需要修改的节点,根据no编号
		// 定义一个辅助变量
		HeroNode temp = head.next;
		boolean flag = false;// 表示是否找到该节点
		while (true) {
			if (temp == null) {
				break;// 已经遍历完链表
			}
			if (temp.no == newHeroNode.no) {
				// 找到
				flag = true;
				break;
			}
			temp = temp.next;
		}
		// 根据flag判断是否找到要修改的节点
		if (flag) {
			temp.name = newHeroNode.name;
			temp.nickname = newHeroNode.nickname;
		} else {// 没有找到
			System.out.printf("没有找到编号 %d 的节点,不能修改\n", newHeroNode.no);
		}
	}
	// 删除节点
	// 思路
	// 1.head不能动,因此我们需要一个temp辅助节点找到待删除节点的前一个节点
	// 2.说明我们在比较时,是temp.next.no 和 需要删除的节点的no比较
	public void del(int no) {
		HeroNode temp = head;
		boolean flag = false;// 标志是否找到待删除节点
		while (true) {
			if (temp.next == null) {// 已经到链表的最后
				break;
			}
			if (temp.next.no == no) {
				// 找到的待删除节点的前一个节点temp
				flag = true;
				break;
			}
			temp = temp.next;// temp后移,遍历
		}
		// 判断flag
		if (flag) {// 找到
			// 可以删除
			temp.next = temp.next.next;
		} else {
			System.out.printf("要删除的 %d 节点不存在\n", no);
		}
	}
	// 显示链表[遍历]
	public void list() {
		// 判断链表是否为空
		if (head.next == null) {
			System.out.println("链表为空");
			return;
		}
		// 因为头节点,不能动,因此我们需要一个辅助变量来遍历
		HeroNode temp = head.next;
		while (true) {
			// 判断是否到链表最后
			if (temp == null) {
				break;
			}
			// 输出节点的信息
			System.out.println(temp);
			// 将temp后移,一定小心
			temp = temp.next;
		}
	}
}
//定义HeroNode,每个HeroNode对象就是一个节点
class HeroNode {
	public int no;
	public String name;
	public String nickname;
	public HeroNode next;// 指向下一个节点
	// 构造器
	public HeroNode(int no, String name, String nickname) {
		this.no = no;
		this.name = name;
		this.nickname = nickname;
	}
	// 为了显示方便,我们重写toString
	@Override
	public String toString() {
		return "HeroNode [no=" + no + ", name=" + name + ", nickname=" + nickname + "]";
	}
}
三、单链表常见面试题
1.求单链表中节点的个数
// 方法:获取到单链表的节点的个数(如果是带头结点的链表,需要不统计头节点)
	/**
	 * head 链表的头节点 返回的就是有效节点的个数
	 */
	public static int getLength(HeroNode head) {
		if (head.next == null) {// 空链表
			return 0;
		}
		int length = 0;
		// 定义一个辅助的变量,这里我们没有统计头节点
		HeroNode cur = head.next;
		while (cur != null) {
			length++;
			cur = cur.next;// 遍历
		}
		return length;
	}
2.查找单链表中的倒数第K个节点【新浪面试题】
// 查找单链表的倒数第k个结点【新浪面试题】
	// 思路
	// 1. 编写一个方法,接收head节点,同时接收一个index
	// 2. index 表示是倒数第index个节点
	// 3. 先把链表从头到尾遍历,得到链表的总的长度 getLength
	// 4. 得到size后,我们从链表的第一个开始遍历(size - index)个,就可以得到
	// 5.如果找到了,则返回该节点,否则返回null
	public static HeroNode findLastIndexNode(HeroNode head, int index) {
		// 判断如果链表为空,返回null
		if (head.next == null) {
			return null;// 没有找到
		}
		// 第一个遍历得到链表的长度(节点个数)
		int size = getLength(head);
		// 第二次遍历 size - index 位置,就是倒数的第index个节点
		// 先做一个index的校验
		if (index <= 0 || index > size) {
			return null;
		}
		// 定义一个辅助变量,for 循环定位到倒数的index
		HeroNode cur = head.next;// 3 - 1 = 2
		for (int i = 0; i < size - index; i++) {
			cur = cur.next;
		}
		return cur;
	}
3.单链表的反转【腾讯面试题,有点难度】 

54BF4A08-1CFA-A6FE-9E6F-2CEF00A3C549.png

18DFDBB1-05F1-233F-36AB-B7026D333E51.png

注意这块思路有点特殊,没理解可以再看看!!!!!!

1A6EA091-A39C-E170-C408-AEB1F5B70250.png

// 将单链表反转
	public static void reverseList(HeroNode head) {
		// 如果当前链表为空,或者只有一个节点,无需反转,直接返回
		if (head.next == null || head.next.next == null) {
			return;
		}
		// 定义一个辅助的指针(变量),帮助我们遍历原来的链表
		HeroNode cur = head.next;
		HeroNode next = null;// 指向当前节点[cur]的下一个节点
		HeroNode reverseHead = new HeroNode(0, "", "");
		// 遍历原来的链表,每遍历一个节点,就将其取出,并放在新的链表reverseHead的最前端
		// 这里难,动脑筋
		while (cur != null) {
			next = cur.next;// 先暂时保存当前节点的下一个节点,因为后面需要使用
			cur.next = reverseHead.next;// 将cur的下一个节点指向新的链表的最前端
			reverseHead.next = cur;// 将cur连接到新的链表上
			cur = next;// 让cur后移
		}
		// 将head.next指向reverseHead.next,实现单链表的反转
		head.next = reverseHead.next;
	}
 4.从尾到头打印单链表【百度,要求方式1:反向遍历。方式2:Stack栈】

思路:

1.上面的题的要求就是逆序打印单链表

2.方式1:先将单链表进行反转操作,然后再遍历即可,这样做的问题是会破坏原来的单链表的结构,不建议

3.方式2:可以利用栈这个数据结构,将各个节点压入到栈中,然后利用栈的先进后出的特点,就实现了逆序打印的效果

// 方式2:
	// 可以利用栈这个数据结构,将各个节点压入到栈中,然后利用栈的先进后出的特点,就实现了逆序打印的效果
	public static void reversePrint(HeroNode head) {
		if (head.next == null) {
			return;// 空链表,不能打印
		}
		// 创建一个栈,将各个节点压入栈
		Stack<HeroNode> stack = new Stack<HeroNode>();
		HeroNode cur = head.next;
		// 将链表的所有节点压入栈
		while (cur != null) {
			stack.push(cur);
			cur = cur.next;// cur后移,这样就可以压入下一个节点
		}
		// 将栈中的节点进行打印,pop出栈
		while (stack.size() > 0) {
			System.out.println(stack.pop());// stack的特点是先进后出
		}
	}
收藏 (0)
评论列表
正在载入评论列表...
我是有底线的
为您推荐
    暂时没有数据