Python学习之几种读取或修改Xls/Xlsx文件的方法

想在深度学习程序运行时动态存下来一些参数。

存成Excel文件查看方便,就查了几种方法,做个测试。因为我平常也不怎么用 Excel,简单的存取数据就够了。

xlwt/xlrd库

存Excel文件:(如果存储数据中有字符,那么写法还有点小小的变化)

import xlwt

workbook = xlwt.Workbook(encoding='utf-8')
booksheet = workbook.add_sheet('Sheet 1', cell_overwrite_ok=True)
#存第一行cell(1,1)和cell(1,2)
booksheet.write(0,0,34)
booksheet.write(0,1,38)
#存第二行cell(2,1)和cell(2,2)
booksheet.write(1,0,36)
booksheet.write(1,1,39)
#存一行数据
rowdata = [43,56]
for i in range(len(rowdata)):
    booksheet.write(2,i,rowdata[i])
workbook.save('test_xlwt.xls')

58A9DF92-C944-3118-F47E-6B3193FD625F.png

②读Excel文件:(同样是对于数值类型数据)

import xlrd

workbook = xlrd.open_workbook('D:\\Py_exercise\\test_xlwt.xls')
print(workbook.sheet_names())                  #查看所有sheet
booksheet = workbook.sheet_by_index(0)         #用索引取第一个sheet
booksheet = workbook.sheet_by_name('Sheet 1')  #或用名称取sheet
#读单元格数据
cell_11 = booksheet.cell_value(0,0)
cell_21 = booksheet.cell_value(1,0)
#读一行数据
row_3 = booksheet.row_values(2)
print(cell_11, cell_21, row_3)

>>>34.0 36.0 [43.0, 56.0]

openpyxl 库

存Excel文件:

from openpyxl import Workbook
 
workbook = Workbook()
booksheet = workbook.active     #获取当前活跃的sheet,默认是第一个sheet
#存第一行单元格cell(1,1)
booksheet.cell(1,1).value = 6   #这个方法索引从1开始
booksheet.cell("B1").value = 7
#存一行数据
booksheet.append([11,87])
workbook.save("test_openpyxl.xlsx")

49E8D4A4-E5B6-00A7-90C7-26401580B7DA.png

②读Excel文件:

from openpyxl import load_workbook
 
workbook = load_workbook('D:\\Py_exercise\\test_openpyxl.xlsx')
#booksheet = workbook.active                #获取当前活跃的sheet,默认是第一个sheet
sheets = workbook.get_sheet_names()         #从名称获取sheet
booksheet = workbook.get_sheet_by_name(sheets[0])

rows = booksheet.rows
columns = booksheet.columns
#迭代所有的行
for row in rows:
    line = [col.value for col in row]

#通过坐标读取值
cell_11 = booksheet.cell('A1').value
cell_11 = booksheet.cell(row=1, column=1).value

原理上其实都一样,就写法上有些差别。

-------------------------------------------------------------------------------------------------------

其实如果对存储格式没有要求的话,我觉得存成csv文件也挺好的:

import pandas as pd

csv_mat = np.empty((0,2),float)
csv_mat = np.append(csv_mat, [[43,55]], axis=0)
csv_mat = np.append(csv_mat, [[65,67]], axis=0)
csv_pd = pd.DataFrame(csv_mat)
csv_pd.to_csv("test_pd.csv", sep=',', header=False, index=False)

因为它读起来非常简单:

import pandas as pd

filename = "D:\\Py_exercise\\test_pd.csv"
csv_data = pd.read_csv(filename, header=None)
csv_data = np.array(csv_data, dtype=float)
收藏 (0)
评论列表
正在载入评论列表...
我是有底线的