基于Pytorch版Yolov5的滑块验证码破解思路详解

前言

本文将使用pytorch框架的目标识别技术实现滑块验证码的破解。我们这里选择了yolov5算法

例:输入图像

6FA469F0-0B42-E4BE-DE72-35E3F2898254.jpeg

输出图像

3E84B759-A7DF-9C74-122B-9B4000C20310.jpeg

可以看到经过检测之后,我们能很准确的定位到缺口的位置,并且能得到缺口的坐标,这样一来我们就能很轻松的实现滑动验证码的破解。

一.前期工作

yolov系列是常用的目标检测算法,yolov5不仅配置简单,而且在速度上也有不小的提升,我们很容易就能训练我们自己的数据集。YOLOV5 Pytorch版本GIthub网址感谢这位作者的代码。

下载之后,是这样的格式

---data/
	Annotations/ 存放图片的标注文件(.xml)
	images/ 存放待训练的图片
	ImageSets/ 存放划分数据集的文件
	labels/ 存放图片的方框信息

其中只需要修改Annotations和images两个文件夹。首先我们将待训练的图片放入images

数据集要感谢这位大神的整理https://github.com/tzutalin/labelImg,在这个基础上我增加了50张来自腾讯的验证码图片

数据集已上传百度云

链接: https://pan.baidu.com/s/1XS5KVoXqGHglfP0mZ3HJLQ

提取码: wqi8

6882A382-DEF6-0B09-EAE2-E1EFB76415BF.png

然后我们需要对其进行标注,告诉计算机我们希望它识别什么内容。这时候我们需要精灵标注这款软件。免费而且功能强大,五星好评!

0ADAC395-0CE4-C06D-2138-D7AB421A1B06.png

第一步选择images文件夹,第二步有几类就写几类,建议用英文。这里只有一类,即为缺失快的位置,命名为target。注意标注的时候要左右恰好卡住,不然获得的坐标就不精准。

标注完成后,点击导出,文件格式不用动,直接点确定,就会在images/outputs文件夹生成我们的标注文件。全部复制到Annotations文件夹即可。

回到主目录,运行makeTxt.py和voc_label.py,makeTxt直接运行即可,voc_label需要修改classes的值,这次只有一target

import xml.etree.ElementTree as ET
import pickle
import os
# os.listdir() 方法用于返回指定的文件夹包含的文件或文件夹的名字的列表
from os import listdir, getcwd
from os.path import join


sets = ['train', 'test', 'val']
classes = ['target'] #之前标注时有几个类,这里就输入几个类

"""

............  

"""

进入data文件夹,修改coco.yaml的内容

# COCO 2017 dataset http://cocodataset.org
# Download command: bash yolov5/data/get_coco2017.sh
# Train command: python train.py --data ./data/coco.yaml
# Dataset should be placed next to yolov5 folder:
#  /parent_folder
#   /coco
#   /yolov5


# train and val datasets (image directory or *.txt file with image paths)
train: ../coco/train2017.txt # 118k images
val: ../coco/val2017.txt # 5k images
test: ../coco/test-dev2017.txt # 20k images for submission to https://competitions.codalab.org/competitions/20794

# number of classes
nc: 1

# class names
names: ['target']

# Print classes
# with open('data/coco.yaml') as f:
#  d = yaml.load(f, Loader=yaml.FullLoader) # dict
#  for i, x in enumerate(d['names']):
#   print(i, x)

再进入models文件夹,修改yolov5s.yaml的内容

nc: 1 # number of classes
depth_multiple: 0.33 # model depth multiple
width_multiple: 0.50 # layer channel multiple
"""
''''''''''''
"""

至此配置环节终于结束了,可以开始训练了!

打开train.py,我们一般只需要修改–weights,–cfg,–data,–epochs几个设置即可

parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='yolov5s.pt', help='initial weights path')
parser.add_argument('--cfg', type=str, default='models/yolov5s.yaml', help='model.yaml path')
parser.add_argument('--data', type=str, default='data/coco.yaml', help='data.yaml path')
parser.add_argument('--hyp', type=str, default='data/hyp.scratch.yaml', help='hyperparameters path')
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--batch-size', type=int, default=16, help='total batch size for all GPUs')
parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='[train, test] image sizes')
parser.add_argument('--rect', action='store_true', help='rectangular training')
parser.add_argument('--resume', nargs='?', const=True, default=False, help='resume most recent training')
parser.add_argument('--nosave', action='store_true', help='only save final checkpoint')
parser.add_argument('--notest', action='store_true', help='only test final epoch')
parser.add_argument('--noautoanchor', action='store_true', help='disable autoanchor check')
parser.add_argument('--evolve', action='store_true', help='evolve hyperparameters')
parser.add_argument('--bucket', type=str, default='', help='gsutil bucket')
parser.add_argument('--cache-images', action='store_true', help='cache images for faster training')
parser.add_argument('--image-weights', action='store_true', help='use weighted image selection for training')
parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
parser.add_argument('--multi-scale', action='store_true', help='vary img-size +/- 50%%')
parser.add_argument('--single-cls', action='store_true', help='train multi-class data as single-class')
parser.add_argument('--adam', action='store_true', help='use torch.optim.Adam() optimizer')
parser.add_argument('--sync-bn', action='store_true', help='use SyncBatchNorm, only available in DDP mode')
parser.add_argument('--local_rank', type=int, default=-1, help='DDP parameter, do not modify')
parser.add_argument('--log-imgs', type=int, default=16, help='number of images for W&B logging, max 100')
parser.add_argument('--log-artifacts', action='store_true', help='log artifacts, i.e. final trained model')
parser.add_argument('--workers', type=int, default=4, help='maximum number of dataloader workers')
parser.add_argument('--project', default='runs/train', help='save to project/name')
parser.add_argument('--name', default='exp', help='save to project/name')
parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
opt = parser.parse_args()

直接运行train.py,开始训练!。。。。。。。。。。。。。。。。

训练完成后,进入runs/train/exp/weights,我们复制best.pt到主目录。

最后,我们打开datect.py,修改几个属性

parser = argparse.ArgumentParser()
  parser.add_argument('--weights', nargs='+', type=str, default='best.pt', help='model.pt path(s)')
  parser.add_argument('--source', type=str, default='test.jpg', help='source') # file/folder, 0 for webcam
  parser.add_argument('--img-size', type=int, default=640, help='inference size (pixels)')
  parser.add_argument('--conf-thres', type=float, default=0.25, help='object confidence threshold')
  parser.add_argument('--iou-thres', type=float, default=0.45, help='IOU threshold for NMS')
  parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
  parser.add_argument('--view-img', action='store_true', help='display results')
  parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
  parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
  parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --class 0, or --class 0 2 3')
  parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
  parser.add_argument('--augment', action='store_true', help='augmented inference')
  parser.add_argument('--update', action='store_true', help='update all models')
  parser.add_argument('--project', default='runs/detect', help='save results to project/name')
  parser.add_argument('--name', default='exp', help='save results to project/name')
  parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
  opt = parser.parse_args()

–source属性我们可以先修改为data/images,对自己的数据集进行识别看看能否正常识别。小Tips,如果执行后不报错,但没有检测框的话,试试看修改–device为cpu,cuda版本太低会导致使用gpu没有检测框(问就是被这个小问题迫害了很久 --_–)。

最后在112行左右的位置,添加一个print

52214686-EE9C-987B-2E5D-44CD6A3EAB49.png

这时执行程序就会返回方框的位置信息和自信度了

EDF51457-52B8-49B4-8D28-90A4C0F5E1BF.png

我们的前驱工作终于完成了~

二.编写爬虫
1.寻找合适的网站

经过一番搜寻,最后锁定了https://007.qq.com/online.html

因为它的网站结构很方便我们的操作。

2.导入依赖库

这里我们采用selenium来模拟人类的操作。关于selenium的安装和webdriver的安装方法本文不作延伸。

from selenium import webdriver
from selenium.webdriver.common.action_chains import ActionChains
import requests,re
import os
import requests
import re 
import time
from selenium.webdriver import ActionChains
3.编写破解程序

访问网站,发现破解之前要依次点击

418416BC-D3E9-CC35-C30C-95562B8D3F3E.png

编写代码

def run()
	driver = webdriver.Chrome()
	
	headers = {"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.106 Safari/537.36"}
	#伪装请求头
	         
	driver.get('https://007.qq.com/online.html') #访问网站
	driver.find_element_by_xpath('/html/body/div[1]/section[1]/div/div/div/div[2]/div[1]/a[2]').click()
	driver.find_element_by_xpath('//*[@id="code"]').click()
	#模拟点击操作

继续

D4CBC891-3753-6B68-1382-87BAA7359644.png

这里便是我们要识别的图片,不过直接定位的话并不能定位到,因为这段代码是由iframe包裹着的,我们需要先定位到这个iframe

time.sleep(2)      #休眠2秒,防止报错  
	driver.switch_to_frame("tcaptcha_iframe") #根据iframe的id定位到iframe
	target = driver.find_element_by_xpath("/html/body/div/div[3]/div[2]/div[1]/div[2]/img").get_attribute("src")
	#得到图片的原地址
	
	response = requests.get(target,headers=headers)	#访问图片地址
	 
	img = response.content
	with open( 'test.jpg','wb' ) as f:
	  f.write(img)		#将图片保存到主目录,命名为test.jpg

现在图片也有了,检测程序也准备好了,那么开始检测吧!

'''
	os.popen()的用法,简单来说就是执行cmd命令,并得到cmd的返回值
	这里是执行detect.py
	'''
	
	result = os.popen("python detect.py").readlines() #执行目标检测程序
	list = []
	for line in result:
	  list.append(line)   #将cmd的返回信息存入列表
	print(list)
	a = re.findall("(.*):(.*]).(.*)\\n",list[-4]) #获得图片的位置信息
	print(a)
	print(len(a))
	if len(a) != 0:     #如果能检测到方框
	  tensor=a[0][1]
	  pro = a[0][2]
	  list_=tensor[2:-1].split(",")
	  
	  location = []
	  for i in list_:
	    print(i)
	    b = re.findall("tensor(.*)",i)[0]
	    location.append(b[1:-2])
	  #提取出来方框左上角的xy和右下角的xy
	  drag1 = driver.find_element_by_xpath('/html/body/div/div[3]/div[2]/div[2]/div[2]/div[1]') 
	  #定位到拖动按钮处
	  
	  action_chains = ActionChains(driver) #实例化鼠标操作类
	  action_chains.drag_and_drop_by_offset(drag1, int(int(location[2])/2-85), 0).perform()
	  #模拟鼠标按住并拖动距离 X 后再放开
	  input("等待操作")  
	  driver.quit() 
	else:
	  driver.quit() 
	  print("未能识别")

这里着重说一下

action_chains.drag_and_drop_by_offset(drag1, int(int(location[2])/2-85), 0).perform()

为什么要拖 int(int(location[2])/2-85) 远。

首先location这个列表的格式为[左上x,左上y,右下x,右下y]location[2]即为取出右下角的x值。

我们保存到本地的验证码图片分辨率如下

AEFFFF97-0951-A84E-D5FE-DCDAB8A3A990.png

但网站显示的图片大小

90BDA418-0576-8E45-FA0A-264D20A9D3B6.png

x轴刚好为本地图片的一半,所以int(location[2]/2)得到的便是

6D3298B8-79AE-AFCF-B14F-6F0B3A709057.png

但是待拖动的方块本身距离左边还有一定距离,通过分析发现

65F9FBF6-4566-42A7-A9A0-79FECFFA6BFE.png

这个小方块的最左边距离图片的最左边的距离即为红框中的26,即

073998EF-BC8D-F9FE-6A43-946CB9DBDBFF.png

26+68-10=84,因为这个10是试出来的长度,我们就令这段距离为85吧

至此 int(int(location[2])/2-85) 的由来也解释清楚了。大功告成啦,那让我们看一遍演示吧!

35F6F019-4693-58DE-155A-1FA842B67F71.gif

selenium完整代码如下

from selenium import webdriver
from selenium.webdriver.common.action_chains import ActionChains
import requests,re
import os
import requests
import re 
import time
from selenium.webdriver import ActionChains

def run()
	driver = webdriver.Chrome()
	
	headers = {"User-Agent":"Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/80.0.3987.106 Safari/537.36"}
	#伪装请求头 
	driver.get('https://007.qq.com/online.html') #访问网站
	driver.find_element_by_xpath('/html/body/div[1]/section[1]/div/div/div/div[2]/div[1]/a[2]').click()
	driver.find_element_by_xpath('//*[@id="code"]').click()
	#模拟点击操作
  time.sleep(2)      #休眠2秒,防止报错  
	driver.switch_to_frame("tcaptcha_iframe") #根据iframe的id定位到iframe
	target = driver.find_element_by_xpath("/html/body/div/div[3]/div[2]/div[1]/div[2]/img").get_attribute("src")
	#得到图片的原地址
	
	response = requests.get(target,headers=headers)	#访问图片地址
	 
	img = response.content
	with open( 'test.jpg','wb' ) as f:
	  f.write(img)		#将图片保存到主目录,命名为test.jpg
	'''
	os.popen()的用法,简单来说就是执行cmd命令,并得到cmd的返回值
	这里是执行detect.py
	'''
	result = os.popen("python detect.py").readlines() #执行目标检测程序
	list = []
	for line in result:
	  list.append(line)   #将cmd的返回信息存入列表
	print(list)
	a = re.findall("(.*):(.*]).(.*)\\n",list[-4]) #获得图片的位置信息
	print(a)
	print(len(a))
	if len(a) != 0:     #如果能检测到方框
	  tensor=a[0][1]
	  pro = a[0][2]
	  list_=tensor[2:-1].split(",")
	  
	  location = []
	  for i in list_:
	    print(i)
	    b = re.findall("tensor(.*)",i)[0]
	    location.append(b[1:-2])
	  #提取出来方框左上角的xy和右下角的xy
	  drag1 = driver.find_element_by_xpath('/html/body/div/div[3]/div[2]/div[2]/div[2]/div[1]') 
	  #定位到拖动按钮处
	  action_chains = ActionChains(driver) #实例化鼠标操作类
	  action_chains.drag_and_drop_by_offset(drag1, int(int(location[2])/2-85), 0).perform()
	  #模拟鼠标按住并拖动距离 X 后再放开
	  input("等待操作")  
	  driver.quit() 
	else:
	  driver.quit() 
	  print("未能识别")    

while True:   
  run()
收藏 (0)
评论列表
正在载入评论列表...
我是有底线的